
JOURNAL OF 

GEOMETRYLND 
PHYSICS 

ELSEWIER Journal of Geometry and Physics 27 (1998) 333-349 

Pontrjagin forms, Chern Simons classes, Codazzi 
transformations, and affine hypersurfaces 

Novica BlaZiC a91, Neda Bokan av1, Peter B. Gilkey b,* 
a Faculty of Mathematics, Universiry of Belgrade, Studentski trg 16, 

PP 550, I1 000 Beogmd, Yugoslavia 
b Mathematics Department, University of Oregon, Eugene Or 97403, USA 

Received 30 December 1997 

Abstract 

We show that the primary and secondary characteristic classes vanish in the context of affine 
differential geometry. This gives rise to obstructions to realizing a conformal class of metrics on 
a manifold either as the first or as the second fundamental form of an affine immersion. 0 1998 
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1. Introduction 

The primary and secondary characteristic forms are the focus of our study in this paper. 
Consequently, it is worth motivating their study; they appear in many contexts. Let M be a 
compact m-dimensional manifold with smooth boundary l3M. Let h be a Riemannian metric 
on M and let R be the curvature tensor of the Levi-Civita connection h V. Let indices i, j, k, 
and 2 range from 1 to m and index a local orthonormal frame [ei } for the tangent bundle. At 
a point of the boundary of M, we assume that e, is the inward unit normal and let indices 
a, b, c range from 1 to m - 1. Let Lab := (hVe,eb, e,) be the second fundamental form on 
the boundary. We adopt the Einstein convention and sum over repeated indices. Suppose 
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that M is a compact four dimensional orientable manifold with smooth boundary aM. Let 
dx and dy be the volume elements on M and on aM. The Chern-Gauss-Bonnet formula 
[S] and the Atiyah-Patodi-Singer index formula [2] yield formulas for the Euler-Poincare 
characteristic x (M) and the signature Sign(M) : 

x(M) = s E&V) dx - 
s 

TE4(hV, L) dy, 

Ml 
aM 

Sign(M) = 3 
s 

PI - f 
s 

TPI(~V, L) - q(aM). 
M aM 

In these formulas we have 

E4(hV) : = &(&jji&ik - 4RijjkEiUk + Eijkl Rijkl), 

PI 1 = -&Rijklk2Rjik3k4ek1 Aek2 Aek3 Aek4, 

TE4ChV : = -&(3RijjiLaa + 6RamamLbb + 6RacbcLab 

+%azLbbLcc - 6LabLabLcc + 4L,bLb,Lc,), 

(1.1) 

(1.2) 

TPI(L, hV) := -&L,b&&” AeC A ed, 

The interior integrands E4 and PI are primary characteristic forms; the boundary integrand 
T Eq and T PI are secondary characteristic form. The invariant r] (aM) is intrinsic to i3 M 
and is a global spectral invariant of aM; we will not be concerned with this invariant 
here. There are suitable generalizations of these formulas to higher dimensions, see [16] 
for details. These formulas play a crucial role in the study of gravitational instantons; see 
[ 121 for a more complete bibliography. The primary and secondary characteristic forms are 
crucial in index theory for manifolds with boundary. In these formulas we are dealing with 
differential forms and not with cohomology classes; the index theorem involves geometric 
quantities and not topological ones in this setting. 

In addition to their use in the index theorem, the secondary characteristic forms are 
important in the study of three-dimensional geometry. They give rise to invariants of knots, 
see for example, [3,13,22]. They give rise to invariants of hyperbolic manifolds [23]. Horava 
[21] uses them to study orbifolds. Finally, they are important in mathematical physics. Chae 
and Rim [7] use them to study the Maxwell-Chem-Simons-Higgs system; Haller and 
Lombridas [ 181 use them to study quantum electrodynamics in 2 + 1 dimensions; Pashaev 
[24] and Yang [33] use them to study gauge theory. We refer to [15] for a formulation of 
Chem-Simons theory as a standard classical field theory. 

The primary and secondary characteristic classes form one theme for our present study. 
The second theme comes from affine differential geometry and from the study of Codazzi 
transformations. We quote from [6] “Relations between conformal and projective struc- 
tures are of particular interest in both mathematics and in mathematical physics. Weyl[3 l] 
attempted a unification of gravitation and electromagnetism in a model of space-time ge- 
ometry combining both structures. His particular approach failed for physical reasons but 
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his model is still studied in mathematics (see, for example [ 14,19,25]) and in mathematical 
physics (see, for example [20])“. In addition to applications in mathematical physics, the 
Codazzi tensor arises naturally in affine differential geometry, see for example [28]. We 
also refer to [4,11,27,30] for related work on the Codazzi tensor. 

Here is a brief outline to the paper. In Section 2, we review the construction of the 
primary characteristic forms Q(V) where Q is an invariant polynomial and where V is a 
connection on TM; we refer to [ 12,171 for further details concerning this material. Let h V 
be the Levi-Civita connection of a semi-Riemannian metric h on M. Note that if h and i 
are conformally equivalent, then Q(h V) = Q(” V); the characteristic forms are conformal 
invariants. Two torsion free connections V and V are said to be projectively equivalent 
if their unparametrized geodesics agree. We will show that if V and V are projectively 
equivalent, then Q(V) = Q(V); the characteristic forms are also projective invariants. 

In Section 3, we give a brief introduction to affine differential geometry; we refer to [5,29] 
for further information concerning this material. If n is a non-degenerate embedding of a 
manifold M as a hypersurface in affine space, we let (x, X, y) be a relative normalization. 
This defines a triple (V, h, *V) where h is a semi-Riemannian metric on M and where V 
and *V are torsion free connections on the tangent bundle. If Q is an invariant polynomial, 
we will show that Q(V) = 0, that Q(hV) = 0, and that Q(*V) = 0, see Theorem 3.2. 

In Section 4, we review the construction of the absolute and relative secondary char- 
acteristic classes. We refer to [9,10,12] for further details concerning this material. The 
relative secondary characteristic forms arise from considering pairs of connections and the 
absolute secondary characteristic forms arise from the transgression and are defined on 
the principal bundle. In Section 5, we show that the secondary characteristic forms of the 
connections V, *V, and hV vanish, see Theorem 5.2. In Section 6, we apply these results 
to three-dimensional affine differential geometry to construct obstructions to realizing the 
conformal class of a Riemannian metric as the second fundamental form of an embedding, 
see Theorem 6.1; this generalizes work of Chem-Simons [lo]. 

2. Pontrjagin forms and second characteristic classes 

We shall restrict our attention to the tangent bundle TM henceforth; let V be an arbitrary 
connection on TM. The curvature R of V is given by 

R(u, v) := V,V, - V,V, - V(u,v), 

where u and v are vector fields on M. If {ei} is a local frame for TM, then R = Rijkl where 
R(ei , ej)ek = Rijk’el; we adopt the Einstein convenion and sum over repeated indices. We 
shall let 

R = RL := ;Rijk’e” A cl 

be the associated 2-form valued endomorphism. As we are not assuming that a metric is 
given, we do not restrict to orthonormal frames. Thus the structure group is the full general 
linear group GL(m; R) and not the orthogonal group G(m). 
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Definition 2.1. Let gl(m, [w) be the Lie algebra of GL(m; [w); this is the Lie algebra of 
real m x m matrices. If Q is a map from gI(m; R) to C, we say that Q is invariant if 
Q(gAg-‘) = Q(A) for all A E gI(m; R) and for all g E GL(m; R). Let & be the ring of 
invariant polynomials. We decompose & = @&, as a graded ring where Q, is the subspace 
of invariant polynomials which are homogeneous of degree u. Let 

, 

and 

= 1 + Cl(A) +. . . + C,(A) 

define the Chem character and total Chem polynomial; Ch, E Q, and C, E &“. The 
Chern characters and the Chem polynomials generate the characteristic ring: 

Q = @[Cl,. . . , C,] and Q = (C[Chl, . . . , Ch,]. 

Let Q E Q,. We polarize Q to define a multi-linear form Q(A1, . . . , A,) so that 

Q(A) = Q(A,. . . , A) and Q(A1,. . . , A,) = Q(gAlg-‘, . . . ,gA,g-‘). 

If Q E Qv, we define 

Q(V) := Q(R, . . . , R) E CCO(A2”M) 

by substitution; the value is independent of the frame chosen and associates a closed differ- 
ential form of degree 2u to any connection V on TM. The corresponding cohomology class 
(Q(V)) E H*“(M; 6J is independent of the connection V chosen; see Eq. (4.1). These are 
the characteristic forms and classes. 

Let A E o(m) be a skew-symmetric matrix. Then Czv+l (A) = 0 and we define P,(A) = 
(-l)“C*,(A); P = c, P”(A) is the total Pontrjagin polynomial. The (P”} for 2v 5 m 
generate the characteristic ring of the orthogonal group O(m). We can always choose a 
Riemannian metric g for M and use the associated Levi-Civita connection gV to compute 
the characteristic classes of the tangent bundle. This reduces the structure group to O(m) and 
shows that only the Ponttjagin classes are relevant in the study of the primary characteristic 
classes of TM. From the point of view of cohomology, the connection plays an inessential 
role; however, as noted in Section 1, in many geometrical applications, one must work with 
differential forms and not cohomology classes; it is the differential form PI and not the 
characteristic class (PI) which plays a crucial role in Eqs. (1.1) and (1.2). 

Definition 2.2. Let 6 := CT(M) be the space of smooth positive functions on M; this is 
a group under pointwise multiplication and will be our gauge group. The associated Lie 
algebra is C?(M) and the map u H ea provides the usual exponential correspondence. 
Since B is Abelian, the Lie bracket is trivial. Let h V be Levi-Civita connection associated 
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to a semi-Riemanman metric h. The gauge group E acts on the set of semi-Riemannian 
metrics by conformal resealing; 

/3(h) := Bh for g E 6. (2.1) 

If V is a torsion free connection and if f E P’(M), then the Hessian HV (f) is a 2-tensor 
given by 

Hv(f)(n, u) := u(M)) - (V,u)(f). 

Since V is torsion free, we have V,, v - V,u = (u, v) and thus Hv (f) is a symmetric 
tensor. If we use ‘;’ to denote multiple covariant differentiation, then the components of 
Ho(f) are given by f;ij and we have f;ij = f;ji. 

We say that two torsion free connections V and V are projectively equivalent if their 
unparametrized geodesics coincide. Equivalently, this means that there is a smooth closed 
l-form 0 so that 

(V, - v&J = 8(U)V + O(tJ)u; 

we refer to [26] for details. Locally, we can always choose a primitive for 8 and express 
0 = d In B. We define an action of the gauge group 6 on the set of torsion free connections 
by defining 

B(V)UV := VUu + u(lnB)v + v(lnB)u. (2.2) 

Conformally equivalent metrics and projectively equivalent torsion free connections have 
the same characteristic forms: 

Theorem 2.3. Let Q E Q, and let /? E 8. 
(1) Let hV be the Levi-Civita connection of a semi-Riemunnian metric. Then Q(hV) = 

Q(B’h’V). 
(2) Let V be a torsionfree connection. Then Q(j3(V)) = Q(V). 

Proo$ Although assertion (1) is well-known, we give a somewhat non-standard proof adapt- 
ing an argument of Atiyah et al. [l] to motivate the proof we shall give for assertion (2). 
Let h Rijk’ be the components of the curvature tensor of the Levi-Civita connection hV. 
We use Weyl’s theorem [32] on the invariants of the orthogonal group to see that Q can be 
expressed in terms of traces. This means that we must alternate 2u indices and contract the 
remaining indices in pairs. For example, 

PI(R) = -&RijkIk,Rjiazkdekl /\ek2 ~~~~ beg”. 

The indices i and j are contracted; the indices k, are alternated. We refer to [17] for a 
more detailed discussion. Let o := In B. We define a l-parameter subgroup /?(t) := e’@ 
of C,“(M). Let hV(t) be the Levi-Civita connections of the metrics h(t) := B(t)h. We 
linearize the variation and define 

6Q(a, hV) := d,Q(hV(t))],=o. 
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To complete the proof of the first assertion, we must show 6 Q = 0. If i$ is a local coordinate 
frame for TM, let fijk := ihk’(ajhil + &hjl - &hij) be the Christoffel symbols. We have 

atRijk'(t)lt=O = ihln(hjn(Il;ik + hikU;j, - hinCX;jk -hjkCX;i,), 

ij 

The polynomials Qij are homogeneous of degree v - 1 in the components of R. We 
apply Weyl’s theorem [32] on the invariants of the orthogonal group. There are a total of 
2 + 4(v - 1) = 4v - 2 indices present in a typical monomial of 6 Q. We must alternate 2v 
of these indices and contract 2u - 2 of these indices in pairs to form invariant expressions. 
Since a;ij is a symmetric 2-tensor, we cannot alternate both of the indices which appear in 
a;ij. Thus we must alternate at least 2v - 1 of the 4u - 4 indices appearing in the v - 1 
R-variables. Thus at least three indices are alternated in some R variable. The Bianchi 
identities Rijkl+ Rjkil+ Rkijl = 0 and the other curvature symmetries then imply that this 
alternation vanishes. This completes the proof of the first assertion. 

The proof of the second assertion is similar. Let V(t) be the l-parameter family of 
projectively equivalent connections defined by the action of #I(t) on the set of torsion free 
connections given in Eq. (2.2). We use [5, Lemma 2.11 to see 

Rt(u, v)w = R(u, v)w + e”YHv(e-ta)(u, w)u - e’“&(e?)(u, w)u, 

&R,(u, u)wlt=o = &(a)oG w)v - ffv(cr)(v, w)u, 
&Rijk’lt=o = Ck!;ik6; - a; jk6!, 

JQ(m, V) := &Q<v<t))lt=o = Ca;ijQij(R). 

ij 

The coefficients Qij (R) are multi-linear expressions which are homogeneous of degree 
v - 1 in R. Since V is torsion free, o;ij = Cr;ji. 

The natural structure group in this setting is GL(m; W), not the orthogonal group. Thus 
the distinction between upper and lower indices is crucial. We have v - 1 upper indices and 
3v - 1 lower indices which are free. We must contract v - 1 upper indices against u - 1 
lower indices and alternate the remaining 2u lower indices. Since cr;ij is symmetric, we 
cannot alternate two indices in cll;ij. Thus we must alternate at least 2u - 1 lower indices 
in the u - 1 R variables. Again, a counting argument shows that we must alternate three 
lower indices in some R variable. Since V is torsion free, the Bianchi identity holds for the 
curvature R and this alternation vanishes. 0 

3. Affine differential geometry 

We shall begin this section with a brief introduction to affine and Codazzi geometry. Let 
A be a real afhne space which is modeled on a vector space V of dimension m + 1. If 
a E A, we identify the tangent space Tad with V and the cotangent space T,*A with the 
dual vector space V*. Let (s, .) : V* @ V + Iw be the natural pairing between V* and V. 
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Let x : M + A be a smooth immersion of A4 into A as a non-singular hypersurface. The 
conormal space at a point P of A4 is defined by 

C(M)p := {X E v* : (X, dx(u)) = 0 v 2) E TpM}. 

By passing to a suitable double cover of M if necessary, we may assume that the conormal 
bundle C(M) is trivial and choose a non-vanishing conormal vector field X. We say that 
the immersion x is regular if and only if there exists X such that Rat&(X, dX) = m + 1 
for all points P of M; we impose this condition henceforth. Define y = y(X) : M + V 

by the conditions 

(X,y) = 1 and (dX,y) =O. 

The triple (x, X, y) is called a hypersurface with relative normalization; we note that y 
need not be an immersion. We define a transitive action of the gauge group 6 on the set of 
relative normalizations by resealing X; we set 

B(x, X, Y) := (x, BX, B-’ . (y + dX(gra& InS)). (3.1) 

Let dV be the flat affine connection on A. The relative structure equations given below 
contain the fundamental geometric quantities of hypersurface theory: two connections V, 
*V, the relative shape or Weingarten operator S, and two symmetric forms h and j. We 
have 

dV,y = dy(v) = - dx(S(u)), 

dV, dx(v) = dx(V,v) + h(u, v)y, 

V,A dX(v) = dX(*V,v) - S(U, u)X. 

(3.2) 

The first equation is called the Weingarten equation, and the second two are called the Gauss 
equations. The tensor h is called the Blaschke metric; we assume that it is non-degenerate. 
Note that h(u, S(v)) = s(u, v). 

Definition 3.1. We say that a torsion free connection *V and a semi-Riemannian metric h 
satisfy the Codaui equations or are Coda& compatible if 

(*VJr)(u, w) = (*V&)(k uJ>. 

Note that if (h, *V) satisfies the Codazzi equation, then (/3(h), j?(*V)) also satisfies the 
Codazzi equation, so Codazzi compatibility is preserved by the action of the gauge group 
6 given in Eqs. (2.1) and (2.2). We say that (V, h, *V) is a conjugate triple if V and *V 
are torsion free connections, if h is a semi-Riemannian metric on M, if (h, *V) satisfies the 
Codazzi equation, and if we have the metric duality identity: 

uh(tJ, w) = h(V,v, w) + h(v, *v*w). 

Note that in this setting (h, V) is Codazzi compatible as well. Given a torsion free connection 
V and a semi-Riemannian metric h, we define the 3-tensor 

C(h, Vijk :=h(?ve, - Ve,,kj, a), 
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where {ei } is a local orthonormal frame field. Suppose that (V, h, *V) satisfies the duality 
equation given above. Then (V, h, *V) is a conjugate triple if and only if 

cijk = cjik = cikj and ciij;k = ciik;j. 

We define an action of the gauge group 6 on the set of conjugate triples by setting 

a(B(V, k *V)) = MB, h)V, B(h), B(*V), 

where 

(a(/?, h)V),v := VUv - h(u, v) gradh In/?, 

B(h) := Bh, 

B(*V),v := *VUv + u(lnB)v + v(ln/?)u. 

(3.3) 

If (X , X, y ) is a relative normalization of a non-degenerate hypersurface, then (V , h , * V) 
is a conjugate triple. The action of the gauge group B on the set of relative normalizations 
given in Eq. (3.1) is compatible with the action of 6 on the set of associated conjugate 
triples given in Eq. (3.3). The following is one of the main results of this paper: 

Theorem 3.2. Let Q E &, and let (V, h, *V) be the conjugate triple dejined by a relative 
normalization (x, X, y). Then Q(V) = 0, Q(hV) = 0, and Q(*V> = 0. 

Pro08 We use the metric to raise and lower indices. We have by [29, pp. 72 and 781 that 

$(u, v) = h(S(u), v) = h(u, S(V)), 

R(V),,i’ = h,$; - h+Sfl, (3.4) 
R(*V)rsi’ = SsiSF - SriSi, 

R(hV),,il = CriaCasl - CsiaCarl + i{$siSf- - ir,iSf + h,i$ - h,i$). 

Thuswemayexpress Q(V) = Ql(h, $) and Q(*V) = Qz(h, i) where Qi ishomogeneous 
of degree u in the symmetric tensor s. We have 2u indices coming from i at our disposal 
in each monomial of Qi . Weyl’s theorem [32] shows that to construct a 2u form, we must 
alternate all these indices. This yields 0 as 4 is a symmetric tensor. Consequently Q(V) = 0 
and Q(*V) = 0. 

The situation with hV is a bit more complicated. Express Q(hV) = Q3(C, i). We define 
the degree of C to be 1 and the degree of ,? to be 2; this counts the number of derivatives 
which appear. We use Eq. (3.4) to see that R(hV) is homogeneous of degree 2 and so Q3 
is homogeneous of degree 2~. There are three indices in each C variable and two indices 
in each ,? variable. If a monomial contains c of the C variables and s of the $ variables, 
then c + 2s = 2u and there are a total of 3c + 2s variables. We must alternate 2u indices 
and contract the remaining 3c + 2s - 2u = 2c indices in pairs. Since C is symmetric, we 
can only alternate only one index in each C variable. Thus we must alternate all the indices 
which appear in the S variables. Since S is symmetric, this yields 0 ifs > 0. 
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This argument shows that the monomials which contain S are trivial and hence Q3 = 
Q3(C). We have 2u of the C variables; in each variable, we alternate one index. The 
remaining indices are contracted in pairs. Thus we can break up Qs as the product of cycles 
of length L which have the form: 

Ci,,i2,jlCi*,i3,j* “‘Ci,,i,,j,t?j’ Aej2 A... Aej’. (3.5) 

Since S does not appear in Q3, we may replace the curvature endomorphism which we 
defined to be Ri := Rijk’e’ A ej by a new endomorphism 

0: := (C,kjCsj’ - CskjC,j’)e’ A es = 2C,kjCsj’e’ A es. 

This is quadratic in C. We form monomials of Q3 by contracting indices of D in pairs; this 
shows that all the cycles which appear in Eq. (3.5) have even length L. We perform a cyclic 
permutation 

il k-+ i2H ... HiLHil and jlHj2w...H jLH jr, 

Since C is totally symmetric and since L is even, the cycle of Eq. (3.5) changes sign under 
this permutation. This shows Q3 = 0. 0 

4. Secondary characteristic forms 

4.1. Relative characteristic forms 

The space of all connections is an affine space; the space of torsion free connections 
is an affine subspace. If Vi are connections on TM, let V, := tV1 + (1 - t)Vu. Let 
I++ := Vt - Vu; $ is an invariantly defined 1 form valued endomorph&m. Let R(t) be the 
associated curvature. Let Q E QU. Let 

1 

TQCVl, Vo> := v s Q(vQ, R(t), . . . , R(t)) dt, 
0 

dTQ<Vl, Vo) = Q<Vl> - Q<Vo>. (4.1) 

This shows that [ Q(Vl )] = [ Q(V2>] in de Rham cohomology as discussed in Section 1. 
Note that we have 

TQ(Vo, VI) + TQ(Vl, V;?) = TQ(Vo, V2) + exact. 

Suppose that M is a four-dimensional Riemannian manifold with smooth non-empty 
boundary aM. Choose a Riemanman metric h on M. Let x = (y, t) be local coordinates 
for M near aM so the curves t H (y, t) are unit speed geodesics perpendicular to the 
boundary. This identifies a neighborhood of 8M in M with a collared neighborhood K := 
aM x [0, E) for some E > 0. Let ho be the associated product metric. Let Vt be the Levi- 
Civita connection of h and Vu the Levi-Civita connection of ho. Then T PI (Vt , Vo) is given 
by Eq. (1.2); see [ 121 for details. 
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4.2. Absolute secondary characteristic forms 

Let n : P + M be the principal frame bundle for TM; a local section e to P is a frame 
e = {ei } for TM. Let g be the natural inclusion of GL(m, R) in the Lie algebra gl(m; R) of 
m x m real matrices. The Maurer-Cartan form dg g-t on GL(m; R) is a gI(m; W) valued 
l-form on GL(m; R) which is invariant under right multiplication. Let V be a connection 
on TM. Fix a local frame field e for TM; this is often called a choice ofgauge. Let w be 
the associated connection 1 form; Vei = wi ej . We define 

0 := O(V) := dgg-’ + gwg-‘, 

D := .n(V) := g(dw - o A w)g-t = g(rr*R)g-‘. 

These are Lie algebra valued forms on the principal bundle P which do not depend on the 
local frame field chosen. If Q E Q,, then we have 
td@-t20AO=ta+(t-t2)@r\@anddefine 

7Q(V) := v 
s 

Q(@, L?(t), . . . , n(t)) dt. 

0 

Q(Q) = rr*Q(V). We set S?(t) = 

(4.2) 

We refer to [lo, Propositions 3.2, 3.7, and 3.81 for the proof of: 

Theorem 4.1. Let Q E Q, and let e E C&. 
(1) We have dlQ(V) = rr*Q(V). 
(2) We have l(QQ)(V) = ‘7Q(V) A n*o(V)+exact = n*Q(V) A IQ(V)+exact. 
(3) Let V, be a smooth I-parameterfamily of connections. Let A := i3cV,],=u. Then 

a,lQ(V,)lc=o = vQ(A, 520,. . . , L&I) + exact. 

Suppose M is parallelizable. Let e be a global frame for the principal frame bundle P. 
Let eVe = 0 define the connection eV. Let we = Ve and let 

R, := t do, - t2we A w, = tR + (t - t2)u, A co,. 

We use Eqs. (4.1) and (4.2) to see that 

1 

e*lQ(V) = 
s 

Q(w,, R1, . . . ,R,) = TQ(V,eV). 

0 

(4.3) 

We note that R, is the curvature of the connection teV + (1 - t>V. Fix g E GL(m; R). 
Since Q is GL invariant, we have 

e*lQ(V) = (ge)*lQ(V). (4.4) 

Let Q E Q,. Suppose that Q(V) = 0. Then e*lQ(V) is a closed form on M of degree 
2v - 1 and [e*lQ(V)] in H 2”-1(M; C) is independent of the homotopy class of e. We 
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say that Q is integral if Q is the image of an integral class in the classifying space; see [ 10, 
Section 31 for details; the Pontrjagin polynomials are integral. 

Theorem 4.2. Let Q E &,. Assume that M isparallelizable and that Q(V) = 0. 
(1) Z’ Q is integral, then [e*lQ(V)] is independent of e in H2”-l (M; C/Z). 
(2) Zf v is odd, then [e*lQ(V)] is independent of e in H2”-‘(M; C). 

Proofi We refer to [lo, Theorem 3.161 for the proof of the first assertion; the second asser- 
tion follows from the first since the real cohomology of the classifying space vanishes in 
dimensions k which are not congruent to 0 mod 4. 0 

5. Affine invariance of the secondary characteristic classes 

Let (V, h, *V) be the conjugate triple defined by a relative normalization (x, X, y) of an 
affine embedding of an orientable manifold M. Since y is transverse to the hypersurface, 

the map ~CIX,X,~ := x, @ y defines an isomorphism between TM $1 and the trivial bundle 
M x V. Choose abasis {et, . . . , e,+ I} for the underlying vector space V . We then have that 

ex,xy := *x;:,, e is a stable parallelization of M; this depends, of course, on the immersion 
x and upon the relative normalization (X, y). Let M := M x R; TM = TM Cl3 1 so ex,x,y 
gives a parallelization of M. We have increased the structure group from GL(m, R) to 
GL(m + 1, R) in order to use Theorem 4.2. 

Let Q E Q,. Let MV be a torsion free connection on A4 with Q(MV) = 0. We extend 
M V to a torsion free connection M V on M by defining M V a, = 0. We may express Q in 
terms of traces since traces generate the characteristic ring. Thus Q extends to an invariant 
polynomialongI(m+l, R).Since~R = ~R@O,wehave Q(MV) = Q(MV) = O.Thus 
e* .,x,Y7Q(~V) is a well-defined closed differential form on M which is independent of 
the auxilary parameter t and which therefore restricts to a well-defined closed differential 
form on M. The space of relative normalizations is path connected once an orientation 
is chosen; thus [e: x y ‘7Q&V)] is independent of the relative normalization; it is also 
independent of the particular basis for V chosen. We denote this cohomology class by 

[‘&Q&V)] E H*“-‘(M; C). 

By Theorem 3.2, Q(V) = 0, Q(hV) = 0, and Q(*V) = 0. Thus we can apply this 
construction to the three natural connections associated with the relative normalization. 
We say that Q is decomposible if Q = xi Qi,l Qi,2 where the Qi,j are non-trivial invari- 
ant polynomials which are homogeneous of positive degree. We begin our study with the 
following lemma. 

Lemma 5.1. Let (V, h, *V) be the conjugate triple defined by a relative normalization 
(x, X, y) of an afine embedding of an orientable manifold M. Let Q E &,. 
(1) Zf Q is decomposible, then [IxQ(V)] = 0, [I,Q(*V)] = 0, and [7xQ(hV)] = 0 in 

H2”-l (M; C). 
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(2) The classes [I, Q(V)], [I, Q(*V)], and [I, Q(hV)] in H2”-l (M; C) are afine invari- 
ants: these cohomology classes are independent of the relative normalization chosen. 

Proo$ Suppose Q is decomposible. Let V be one of the three connections in question. We 
use Theorem 4.1(2) to see 7, Q(V) = xi 7, Qi, 1 (v) A Qi,z(V)+exact. We apply Theorem 
3.2 to see Qi,z(V) = 0. This proves the first assertion. 

Without loss of generality, we may assume Q(n) = Tr(G fl+‘) since such traces generate 
the characteristic ring. Let p(e) := e@ be a l-parameter family of the gauge group $7. Let 
V(e) be the associated l-parameter family of connections where we use the transformation 
laws described in Section 3. Let A = a,V(@)jc=c. We define 

f := &j2pjlRi,i,j,j2.. . &2eL_,i2fij2w_lj2~eio A eil A.. . A ei2Pe 

If we can show E = 0, the desired result will follow from Theorem 4.1(3). Since E is 
independent of the particular frame chosen, we can compute in a local frame field which is 
orthonormal with respect to the metric h. 

SUppOSe first v = *V.ByEq.(3.3), *Aijk = (eia)Jjk + (eja)fJik.ThUS 

& = do A Tr((*R)P) + ej,~(cr)bi,j,*Ri,i,j,j, * ..eio A eil A ei2 * ** 

The first term vanishes by Theorem 3.2. Since *V is torsion free, *R satisfies the Bianchi 
identity SO Riliziojl eio A eil A eiz = 0 and the second term vanishes as well. 

SUppOSe next that V = V. By Eq. (3.3), Aijk = -t?k(a)%j. ThUS 

8 = -ej, (ct)Sioj2eL Rili2jlj2 . . . Ri2w_li2wj21r_,j21*eio A ei2 A ei3 . . . ei2p. 

We use Eq. (3.4) to see Rabcd = &Sad -f&d &. Since S is symmetric and since R satisfies 
the Bianchi identities, we show & = 0 by computing 

Ri2p-li2tiLj2pm1i0 
eio A ei2u-I A ei21* = _R. ~2/L_,~2w~oj2w_,eio A ei2!--l A ei2p = 0. 

Finally, we consider the connection h V. Relative to a coordinate frame, we have 

hfijk = ihkl(aihjl + ajhil - alhij). 

Consequently, relative to an orthonormal frame, we have 

hAijk = ~{bikej(cr)+Gjkei(~)-6ijek(ol)}. 

We decompose E = i(El + &2 + Es) where 

Et = a;j2,Gioj,hRi,i2j,j2 . . . hRi2~_,i2/Lj2/L_,‘2~eio A eil A . . . A ei2@, 

&2 = ~;io8j2pjlhRili2jlj2 ...hRi2~_,i2~j2p_,‘2/1eio A eil A ... A ei2p, 

&3 = -a;j,6ioj,,hRi,i2j,j, . ..hRiZCL_-li2CLj2C(_l’21Leio A eil A ... Aei2F. 

We use the Bianchi identity to see &I = 0. Since & = da! A Tr((hR)p”-l) = 0, &2 = 0 
by Theorem 3.2. Since &3 involves hRi2w_li21Lj21r_,iDeio A eizfi-l A ei2p, &3 = 0 because 
hR a&d = -h Rabdc and because h R satisfies the Bianchi identity. 0 
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We use Lemma 5.1 to prove the following result which is one of the main results of this 
paper: 

Theorem 5.2. Let (V, h, *V) be the conjugate triple defined by a relative normalization 
(x, X, y) of an afine embedding of an orientable manifold M. Let Q E &“. 
(1) We have [?; Q(V)] = 0 in H2”-‘(M; C). 
(2) Zf Q is integral and zfu is even, then [I, Q(*V) = 0] in H2”-l (M; C/Z). 
(3) Zf u is odd, then [I, Q(*V) = 0] in H2”-l (M; C). 
(4) Zf u is even, then [I, Q(hV) = 0] in H2”-‘(M; C). 
(5) Zf u is odd and if h is definite, then [I, Q(hV)] = 0 in H2”-1 (M; C). 

Proo$ As in the proof of Lemma 5.1, we may suppose without loss of generality that 
Q(A) = Tr(A”). By Lemma 5.1, the cohomology class of [l,Q(.)] is independent of 
the relative normalization in H 2”-1 (M. C). Thus we may choose a convenient relative 
normalization to prove Theorem 5.2. We choose an inner product and an origin to identify 
the aftine space with R m+l. Let N be the normal vector to the embedding. We use the 
Euclidean inner product to identify V with V*. We let X = N and y = N. We show that 
(x, X, y) is a relative normalization by checking the equations of structure: 

lx, Wu)) = W, &J) = 0, (X, y) = (N, N) = 1, 
(dX(u), y) = (&N, N) = @,(N, N) = 0. 

Let LJ and w be tangent vector fields on M. Let 

g(v, w) := (vx, wx), 

h(u, V) := (uwx, N) = -(vx, wN), 

S(u, V) := (UN, vN) = -(uvN, N) 

be the first, second, and third fundamental forms of the immersion, respectively. Fix a point 
P in M. We shift the origin and rotate the coordinate axes if need be to assume that x(P) = 0 
and that N(P) = (0,. . . , 0, 1). We write x as a graph over the coordinate hyperplane near 
Ptoexpressx(u)=(ut,...,u,, f) for some smooth function f(u) defined near u = 0. 
Let Roman indices range from 1 to m and let Greek indices range from 1 to m + 1. Let 
ai = a/aui. We compute 

aix=(O ,..., O,l,O ,..., O,a,f), 

gij = &j + @if )@jf ), 

N=(-alf,..., -a,f, 1) (1 +,(aif)2)p1. 

Since N(0) = (0, . . . , 0, l), we have d f (P) = 0 and thus we have 

N = (-al f, . . . ) -a,f, 1) + o(u2), and hij = &ajf +O(U~). 
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Since gij = 6ij + O(u2), the Christoffel symbols sVai aj of the Levi-Civita connection 
defined by the metric g vanish at P. We use Eq. (3.2) to see that V = gV. We use Eq. (4.4) 
to see that we can renormalize the basis e for R m+l to assume that e,+t is the normal at P. 
We use $ to identify TM with M x BY+‘. We compute 

ei = (0, . . . , 1, . . . , 0) + ai f(0, . . . , 0,l) - aif(o, . . . , 0, 1) 

= six - (aifjiv + o(z~~), 

em+1 = (-aIf, . . . . -a,f, 1) + calf, . . . , ad-, 0) = N + c ai (f)aix + 0(u2). 

Let A := ‘,w,(P) and let R := g,R(P). We have 

Aj m+l _ - -A,,,+lj = -hijei, and AB = 0, otherwise. 

We use Eq. (4.3) to see that we can express ?; Q(gV) as the sum of traces of products of 
A and R with an odd number of A factors. Since Rim+’ = 0 and ‘Rm+li = 0, these traces 
vanish; this proves the first assertion. 

The connection * V is the Levi-Civita connection of the embedding X. Thus [Ix Q (* V)] = 
0 in H2”-t (M; C) by Theorem 5.2( 1). Since 7x and I, reflect the pull-back by two different 
stable parallelizations of M, we use Theorem 4.2 to derive Theorem 5.2(2) and Theorem 
5.2(3) from Theorem 5.2(l). 

In the proof of the final assertion, we first suppose v is even. We clear the previous 
notation. Let A := gmue(P), ‘72 = kR,(P) and hCjk = C(P)ijke’. We then have 
hg P M e ( ) = C + A. It is clear that 7, Q (h V) is the trace of non-commutative monomials in 
C, R, and A. We note that 

Aj m+l _ - -Am+lj = -hije’, AB = 0, otherwise, 

hRm+li = ‘Rim+’ = hRm+lm+l = 0, 

C m+lL = y+l = cm+y+’ = 0. 

Thus if A appears, it must touch itself, so 7, Qc V) is the trace of non-commutative mono- 
mials in C, R, and A2. We note that 

(A2)k’ = -hikhjle” A ej, (A”);=; = k -hijhjke’ A e = 0, 

and (A2),p = 0 0th erwise. We use the facts that Cfjk is symmetric and that h R satisfies 
the Bianchi identity to see 

Cj,h(A2)j,j3 = Cioj,.hh. h. ,,52 ,2J3e’o A e’l A et2 

= Cioj2i, hi2j3eio A eil A ei2 = 0, 

hR~oi,jl’2(A2)j2j3 = hR~o~,j,‘2h~2j2h~3j3eio A eil A ei2 A ei3 

= hRiOilj,i2hi3j3ei0 A eil A ei2 A ei3 = 0. 

This shows that we may ignore the role of A in our computations. We change our point of 
view and compute with respect to a frame which is orthonormal with respect to h at P. We 
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use Eq. (3.4) to express “R in terms of C and S. The argument given to prove Theorem 3.2 
shows that the terms involving S yield 0. Thus we may replace ‘R by C2 and express 

I, Q(hV) = KU Tr(C2”-I) = K”Ciijrj2Ci2j2j3 *. . Ci2,_ij2U_lj1ei’ A . . . , 

where K” is a certain univeral constant. When we take the transpose, we introduce a factor 
of (-l)“+’ since we are working with differential forms: 

,il A.. . h ei2u-l = (_l)V+leizu-l A , . . A ,il, 

so 

Tr(C2”-’ ) = (-l)“+’ Tr((C2”-I)‘) = (-1)“’ Tr((C’)2”-1). 

Since C is symmetric, Tr((C”)2”-1) = Tr(C2”-’ ) and the desired vanishing theorem now 
follows if u is even. 

Suppose that u is odd. Since the metric h is definite, we may apply the Gram-Schmidt 
process to construct a parallelization Z of M which is orthonormal with respect to the metric 
h $ dt2 and which is homotopic to the original frame e. We clear the previous notation. 
Let h,VZi = OijZj. Since LV is Riemannian, we have wij = -wji and Rij = -Rji. 
We define R(t) := tR + (t - t2)w A O. We then have R(t)ij = -R(t)ji. We use this 
skew-symmetry to compute 

Z*7Q(hMV) = v 
J 

Wiii2R(t)i2i3 . . * R(t)i,i, dt 

0 

= (-1)“v 
J 

Wi2il R(t)i,i, . ’ . ‘WtIi3iz dl 

0 

= (-l)“Z*IQ(hV). 

If u is odd, this implies 2Z*IQ(LV) = 0. 0 

6. Affine geometry in three dimensions 

Let M be a compact orientable three-dimensional manifold. Then M is parallelizable; 
we choose a global frame f for TM. If Q E Q2, then Q = cPr+ decomposible, so we 
need only study [I, PI], where Pt is the first Pontrjagin form. Note that Pt is a real integral 
differential form. We define 

@(V) = 
J 

f*IPr(V) E W/Z, 

M 

by Theorem 4.2, this is independent of the particular parallelization f which is chosen. We 
use Theorem 5.2 to see: 
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Theorem 6.1. Let (M, go) be a three-dimensional Riemannian manifold: 
(1) Ifthere exists an immersion x : A4 + R4 so that go is conformally equivalent to the 

first fundamental form of x, then ae(gV) = 0 in R/Z. 
(2) If there exists an immersion x : M + Iw4 so that go is conformally equivalent to the 

second fundamental form of x, then Qe (g V) = 0 in R/Z. 

We note that assertion (1) was first proved by Chem and Simons [ 10, Theorem 6.41. They 
also showed that given an arbitrary real number r, there exists a left invariant metric on S3 
such that @,(M, go) = r; Theorem 6.1 shows that these metrics cannot he realized either 
as the first or the second fundamental form of an embedding in R4 if r $ Z. 
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